首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3145篇
  免费   193篇
  国内免费   130篇
工业技术   3468篇
  2024年   5篇
  2023年   65篇
  2022年   105篇
  2021年   95篇
  2020年   90篇
  2019年   90篇
  2018年   93篇
  2017年   119篇
  2016年   69篇
  2015年   59篇
  2014年   93篇
  2013年   124篇
  2012年   103篇
  2011年   145篇
  2010年   105篇
  2009年   151篇
  2008年   124篇
  2007年   146篇
  2006年   146篇
  2005年   121篇
  2004年   127篇
  2003年   138篇
  2002年   138篇
  2001年   156篇
  2000年   135篇
  1999年   60篇
  1998年   75篇
  1997年   63篇
  1996年   59篇
  1995年   57篇
  1994年   49篇
  1993年   32篇
  1992年   71篇
  1991年   90篇
  1990年   78篇
  1989年   75篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1951年   1篇
排序方式: 共有3468条查询结果,搜索用时 15 毫秒
1.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
2.
Gadolinium zirconate (GZ) is an attractive material for thermal barrier coatings (TBCs). However, a single layer GZ coating has poor thermal cycling life compared to Yttria Stabilized Zirconia (YSZ). In this study, Solution Precursor High Velocity Oxy-Fuel (SP-HVOF) thermal spray was used to produce a double layer GZ/YSZ TBC and compared the thermal cycling performance with the single layer YSZ TBC. The temperature behaviour of the solution precursor GZ was studied, and single splat tests were carried out to obtain an optimised spray parameter. In thermal cycling tests, the single-layer YSZ reached 20 % failure at 85 ± 5 cycles, whereas the double-layer GZ/YSZ was at 70 ± 15 cycles. The single-layer failed at the topcoat/TGO interface, whereas the double-layer failed at GZ/YSZ interface and topcoat/TGO interface. Moreover, Gd diffusion occurred near the GZ/YSZ interface, resulting in porosities in the GZ layer.  相似文献   
3.
Polycrystalline mullite fibers and novel zirconia-toughened mullite (ZTM) fibers with average diameters between 9.7 and 10.3 μm containing 3, 7 and 15 wt.-% tetragonal ZrO2 (ZTM3, ZTM7, ZTM15) in the final ceramic were prepared via dry spinning followed by continuous calcination and sintering in air. A shift in the formation of transient alumina phases and tetragonal ZrO2 to higher temperatures with increasing amounts of ZrO2 was observed. Concomitantly, the mullite formation temperature was lowered to 1229 °C for ZTM15 fibers. X-ray diffraction revealed formation of the desired tetragonal crystal structure of ZrO2 directly from the amorphous precursor. Room temperature Weibull strengths of 1320, 1390 and 1740 MPa and Weibull moduli of 9.5, 7.1 and 9.0 were determined for mullite, ZTM3 and ZTM15 fibers, respectively. Average Young’s moduli ranged from 190 to 220 GPa. SEM images revealed crack-free fiber surfaces and compact microstructures independent of the amount of ZrO2.  相似文献   
4.
Cubic zirconia single crystals stabilized with yttria and doped with Gd2O3 (0.10–5.00 mol%) were prepared by the optical floating zone method, and characterized by a combination of X-ray diffraction (XRD), and Raman, electron paramagnetic resonance (EPR), ultraviolet–visible (UV–Vis), photoluminescence excitation (PLE) and photoluminescence (PL) spectroscopic techniques. XRD and Raman spectroscopy showed that the crystal samples were all in the cubic phase, whereas the ceramic sample consisted of a mixture of monoclinic and cubic phases. The absorption spectrum showed four peaks at 245, 273, 308, and 314 nm in the ultraviolet region, and the optical band gap differed between samples with ≤3.00 mol% and those with >3.00 mol% Gd2O3. The emission spectrum showed a weak peak at 308 nm and a strong peak at 314 nm, which are attributed to the 6P5/2 → 8S7/2 and 6P7/2 → 8S7/2 transitions of Gd3+, respectively. The intensities of the peaks in the excitation and emission spectra increased with Gd3+ concentration, reached a maximum at 2.00 mol%, then decreased with higher concentrations. This quenching is considered to be the result of the electric dipole-dipole interactions, and this interpretation is supported by the Gd3+ EPR spectra, which showed progressive broadening with increasing Gd3+ concentration throughout the concentration range investigated.  相似文献   
5.
《Ceramics International》2022,48(10):13524-13530
Thin film sensors are employed to monitor the health of hot-section components of aeroengine intelligence (for instance, blades), and electrical insulating layers are needed between the metal components and thin film sensors. For this purpose, the electrical insulation characteristics of an yttria-stabilized zirconia (YSZ)/Al2O3 multilayer insulating structure were investigated. First, YSZ thin films were deposited by DC reactive sputtering at various substrate temperatures, and the microstructural features were investigated by scanning electron microscopy and X-ray diffraction. The results indicate that the micromorphology of the YSZ thin film gradually became denser with increasing substrate temperature, and no new phases appeared. The compact and uniform topography of the YSZ thin film improved the insulation properties of the multilayer insulating structure and enhanced the adhesion of the thin film sensors. In addition, the electrical insulation properties of the YSZ/Al2O3 multilayer insulating structure were evaluated via insulation resistance tests from 25 to 800 °C, in which the YSZ thin film was deposited at 550 °C. The results show that the insulation resistance of the multilayer structure increased by an order of magnitude compared with that of the conventional Al2O3 insulating layer, reaching 135 kΩ (5.1 × 10?6 S/m) at 800 °C. Notably, the insulation resistance was still greater than 75 kΩ after annealing at 800 °C for 5 h. Finally, the shunt effect of the YSZ/Al2O3 multilayer insulating structure was estimated using a PdCr thin film strain gauge. The relative resistance error was 0.24%, which demonstrates that the YSZ/Al2O3 multilayer insulating structure is suitable for thin film sensors.  相似文献   
6.
The mechanical property is a crucial factor in the design of bone tissue engineering scaffolds. In the current study, novel PLLA (Poly-L-lactic acid)–Hydroxyapatite (HA)–yttria-stabilized zirconia (YSZ) nanocomposite scaffold with various compositions was prepared and characterized. The effect of HA and YSZ contents on the mechanical behavior of the resultant composites was investigated. TEM micrograph revealed that HA particles are needle-like in shape and nano in size. Scanning electron microscopy (SEM) micrograph also showed that YSZ powder is in granule form and submicron size. SEM disclosed that all scaffolds had a highly interconnected porous structure and X-ray diffractometry revealed that there were some molecular interactions between PLA (Polylactic acid), HA, and YSZ in the composites. The results depicted that introducing YSZ to the nanocomposite leads to a significant increase in compressive strength, modulus, and densification strain. In addition, flexural strength and modulus showed an upward trend by adding YSZ particles to scaffolds. It should be noted that PLA–20%HA–20%YSZ indicates the highest strength and modulus in both compression and bending tests, though, it did not demonstrate the proper strain compared to other scaffolds. Thus, PLA–15%HA–15%YSZ has been reported as the best candidate due to appropriate strength and strain. Also, energy absorption in nanocomposites showed an upward trend by increasing the amount of YSZ particles. It was found that the strength of samples was declined after being soaked in simulated body fluid. However, scaffolds with HA underwent more decrease in strength compared to samples containing YSZ.  相似文献   
7.
The aim of this in vitro study was to investigate the changes in mechanical, optical, and surface properties of multilayered zirconia during hydrothermal aging.One conventional block (Katana Zirconia HT) and three multilayered blocks (Katana Zirconia ML, STML, and UTML) of monolithic zirconia were examined. Bar-shaped specimens were autoclaved at 134°C and 0.2MPa for 0, 5, and 10 h. The Young's modulus, three-point flexural strength, and nanoindentation hardness were measured to evaluate the mechanical properties. The surface roughness, phase distribution, surface microstructure, and elemental composition were measured to analyze the surface properties. The contrast ratio and total transmittance were measured via spectrophotometry to evaluate the optical properties. Statistical differences were analyzed using appropriate ANOVA, Tukey HSD post hoc tests, and independent and paired sample t-tests (α = .05).The monoclinic phase increased gradually after hydrothermal aging. The yttrium and zirconium concentrations decreased, and the oxygen concentration and the surface roughness increased in all specimens (P<.05) after the aging process. All specimens showed significant grain push-out and microcracks. The total transmittance increased, and the contrast ratio and Young's modulus decreased in all specimens (P<.05) after the aging process. The nanoindentation hardness and three-point flexural strength exhibited a decreasing tendency after the aging process. However, there were no statistical differences (P>.05) between the materials. Significant interactions between material grades and hydrothermal aging were found for all the properties studied (P<.001).Microstructural alterations and significant phase transformations were detected on the surface of the multilayered zirconia after hydrothermal aging. The hydrothermal aging led to increased surface roughness, opaqueness, and elasticity of multilayered zirconia. The optical, mechanical, and surface properties of multilayered zirconia were influenced by the grade of the material after hydrothermal aging. Careful consideration of the grade of materials is necessary for the appropriate selection of multilayered zirconia ceramics for monolithic restorations.  相似文献   
8.
In this investigation, low-cement castables were prepared using 70% alumina grog aggregates obtained from crushed alumina brick waste. The aggregates were thermally treated at 1550 °C for 3 h. Four types of low-cement castables were prepared with various types of aggregates (alumina grog with or without thermal treatment) and fillers (with or without zircon addition), and they were evaluated in terms of their physical, thermal, and chemical properties. Microstructural analysis via scanning electron microscopy (SEM) was performed on the castables before and after slag attack. Compared to the other fabricated castables, the thermally treated alumina grog castables with zircon showed better physical properties, such as a higher bulk density, cold crushing strength, and modulus of rupture and a lower apparent porosity and water absorption. In addition, they had a higher positive linear thermal expansion, refractoriness under load, permanent linear change, and hot modulus of rupture. The results of the SEM with energy dispersive X-ray analysis of the prepared castables confirmed that the mullite and anorthite phases were predominant when zircon was not added and the zircon–mullite phase additionally appeared upon the incorporation of zircon. A quantitative elemental analysis via X-ray fluorescence spectroscopy was employed to determine the composition of the castables. X-ray diffraction analysis showed that the alumina grog castables had a high mullite and low anorthite content, and the thermally treated alumina grog had a high anorthite, low mullite, and high zircon content. The improvement in the mechanical and thermo-mechanical properties of the castables with thermally treated alumina grog and added zircon can be attributed to the formation of the zircon–mullite phase with a low mullite phase content.  相似文献   
9.
Mullite-type RMn2O5 (R = Y, rare-earth element) ceramics are of ongoing research attentions because of their interesting crystal-chemical, physical, and thermal properties. We report a detailed structural, spectroscopic and thermal analysis of the series of mullite-type RAlGeO5 (R = Y, Sm-Lu) phases. Polycrystalline samples are prepared by solid-state synthesis methods. Each sample is characterized by X-ray powder diffraction followed by Rietveld refinements, showing that they are isotypic and crystallize in the space group Pbam. The change of the metric parameters is explained in term of the lanthanide contraction effect. A rare inversion of Al/Ge between octahedral and pyramidal sites have been observed for these mullite-type so called O10 compounds, and the inversion parameter found to be between 0.22(1) and 0.30(1) for different R-cations. The <Al/Ge–O> bond distances and their bond valence sums (BVSs) support the respective inversions. Density functional theory (DFT) calculated phonon density of states (PDOS) and electronic band structures are compared for the vibrational and electronic band gap features respectively. Analysis of UV/Vis absorption spectra using both derivation of absorption spectra fitting (DASF) and Tauc's methods demonstrates that each of the RAlGeO5 O10 compounds is high bandgap semiconductor, possessing direct transition between 4.1(1) and 5.4(1) eV. Both Raman and Fourier transform infrared spectra show clear red shift (quasi-harmonic) of the vibrational wavenumbers with respect to the ionic radii of the R-cations. Selective Raman bands at higher wavenumber region further complement the inversion of Al/Ge between two coordination sites. The higher decomposition temperature of the RAlGeO5 compounds, compared to those of RMn2O5 phases, is explained in terms of higher bond strength of Al/Ge-O than those of Mn-O. Irrespective to the inversion between Al- and Ge-sites, the decomposition temperature also depends on the type of R-cation in RAlGeO5.  相似文献   
10.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号